241 research outputs found

    Inhibition of Expression in Escherichia coli of a Virulence Regulator MglB of Francisella tularensis Using External Guide Sequence Technology

    Get PDF
    External guide sequences (EGSs) have successfully been used to inhibit expression of target genes at the post-transcriptional level in both prokaryotes and eukaryotes. We previously reported that EGS accessible and cleavable sites in the target RNAs can rapidly be identified by screening random EGS (rEGS) libraries. Here the method of screening rEGS libraries and a partial RNase T1 digestion assay were used to identify sites accessible to EGSs in the mRNA of a global virulence regulator MglB from Francisella tularensis, a Gram-negative pathogenic bacterium. Specific EGSs were subsequently designed and their activities in terms of the cleavage of mglB mRNA by RNase P were tested in vitro and in vivo. EGS73, EGS148, and EGS155 in both stem and M1 EGS constructs induced mglB mRNA cleavage in vitro. Expression of stem EGS73 and EGS155 in Escherichia coli resulted in significant reduction of the mglB mRNA level coded for the F. tularensis mglB gene inserted in those cells

    The origin of life: chemical evolution of a metabolic system in a mineral honeycomb?

    Get PDF
    For the RNA-world hypothesis to be ecologically feasible, selection mechanisms acting on replicator communities need to be invoked and the corresponding scenarios of molecular evolution specified. Complementing our previous models of chemical evolution on mineral surfaces, in which selection was the consequence of the limited mobility of macromolecules attached to the surface, here we offer an alternative realization of prebiotic group-level selection: the physical encapsulation of local replicator communities into the pores of the mineral substrate. Based on cellular automaton simulations we argue that the effect of group selection in a mineral honeycomb could have been efficient enough to keep prebiotic ribozymes of different specificities and replication rates coexistent, and their metabolic cooperation protected from extensive molecular parasitism. We suggest that mutants of the mild parasites persistent in the metabolic system can acquire useful functions such as replicase activity or the production of membrane components, thus opening the way for the evolution of the first autonomous protocells on Earth

    Massively Parallel RNA Chemical Mapping with a Reduced Bias MAP-seq Protocol

    Full text link
    Chemical mapping methods probe RNA structure by revealing and leveraging correlations of a nucleotide's structural accessibility or flexibility with its reactivity to various chemical probes. Pioneering work by Lucks and colleagues has expanded this method to probe hundreds of molecules at once on an Illumina sequencing platform, obviating the use of slab gels or capillary electrophoresis on one molecule at a time. Here, we describe optimizations to this method from our lab, resulting in the MAP-seq protocol (Multiplexed Accessibility Probing read out through sequencing), version 1.0. The protocol permits the quantitative probing of thousands of RNAs at once, by several chemical modification reagents, on the time scale of a day using a table-top Illumina machine. This method and a software package MAPseeker (http://simtk.org/home/map_seeker) address several potential sources of bias, by eliminating PCR steps, improving ligation efficiencies of ssDNA adapters, and avoiding problematic heuristics in prior algorithms. We hope that the step-by-step description of MAP-seq 1.0 will help other RNA mapping laboratories to transition from electrophoretic to next-generation sequencing methods and to further reduce the turnaround time and any remaining biases of the protocol.Comment: 22 pages, 5 figure

    A Modern Mode of Activation for Nucleic Acid Enzymes

    Get PDF
    Through evolution, enzymes have developed subtle modes of activation in order to ensure the sufficiently high substrate specificity required by modern cellular metabolism. One of these modes is the use of a target-dependent module (i.e. a docking domain) such as those found in signalling kinases. Upon the binding of the target to a docking domain, the substrate is positioned within the catalytic site. The prodomain acts as a target-dependent module switching the kinase from an off state to an on state. As compared to the allosteric mode of activation, there is no need for the presence of a third partner. None of the ribozymes discovered to date have such a mode of activation, nor does any other known RNA. Starting from a specific on/off adaptor for the hepatitis delta virus ribozyme, that differs but has a mechanism reminiscent of this signalling kinase, we have adapted this mode of activation, using the techniques of molecular engineering, to both catalytic RNAs and DNAs exhibiting various activities. Specifically, we adapted three cleaving ribozymes (hepatitis delta virus, hammerhead and hairpin ribozymes), a cleaving 10-23 deoxyribozyme, a ligating hairpin ribozyme and an artificially selected capping ribozyme. In each case, there was a significant gain in terms of substrate specificity. Even if this mode of control is unreported for natural catalytic nucleic acids, its use needs not be limited to proteinous enzymes. We suggest that the complexity of the modern cellular metabolism might have been an important selective pressure in this evolutionary process

    Structure-function analysis in nuclear RNase P RNA

    Full text link
    Eukaryotic ribonuclease P (RNase P) enzymes require both RNA and protein subunits for activity in vivo and in vitro . We have undertaken an analysis of the complex RNA subunit of the nuclear holoenzyme in an effort to understand its structure and its similarities to and differences from the bacterial ribozymes. Phylogenetic analysis, structure-sensitive RNA footprinting, and directed mutagenesis reveal conserved secondary and tertiary structures with both strong similarities to the bacterial consensus and distinctive features. The effects of mutations in the most highly conserved positions are being used to dissect the functions of individual subdomains.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43252/1/11033_2004_Article_BF00988722.pd

    By Any Other Name: Heterologous Replacement of the Escherichia coli RNase P Protein Subunit Has In Vivo Fitness Consequences

    Get PDF
    Bacterial RNase P is an essential ribonucleoprotein composed of a catalytic RNA component (encoded by the rnpB gene) and an associated protein moiety (encoded by rnpA). We construct a system that allows for the deletion of the essential endogenous rnpA copy and for its simultaneous replacement by a heterologous version of the gene. Using growth rate as a proxy, we explore the effects on fitness of heterologous replacement by increasingly divergent versions of the RNase P protein. All of the heterologs tested complement the loss of the endogenous rnpA gene, suggesting that all existing bacterial versions of the rnpA sequence retain the elements required for functional interaction with the RNase P RNA. All replacements, however, exact a cost on organismal fitness, and particularly on the rate of growth acceleration, defined as the time required to reach maximal growth rate. Our data suggest that the similarity of the heterolog to the endogenous version — whether defined at the sequence, structure or codon usage level — does not predict the fitness costs of the replacement. The common assumption that sequence similarity predicts functional similarity requires experimental confirmation and may prove to be an oversimplification

    Small Cofactors May Assist Protein Emergence from RNA World: Clues from RNA-Protein Complexes

    Get PDF
    It is now widely accepted that at an early stage in the evolution of life an RNA world arose, in which RNAs both served as the genetic material and catalyzed diverse biochemical reactions. Then, proteins have gradually replaced RNAs because of their superior catalytic properties in catalysis over time. Therefore, it is important to investigate how primitive functional proteins emerged from RNA world, which can shed light on the evolutionary pathway of life from RNA world to the modern world. In this work, we proposed that the emergence of most primitive functional proteins are assisted by the early primitive nucleotide cofactors, while only a minority are induced directly by RNAs based on the analysis of RNA-protein complexes. Furthermore, the present findings have significant implication for exploring the composition of primitive RNA, i.e., adenine base as principal building blocks

    On the Evolution of the Standard Genetic Code: Vestiges of Critical Scale Invariance from the RNA World in Current Prokaryote Genomes

    Get PDF
    Herein two genetic codes from which the primeval RNA code could have originated the standard genetic code (SGC) are derived. One of them, called extended RNA code type I, consists of all codons of the type RNY (purine-any base-pyrimidine) plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. In order to test if putative nucleotide sequences in the RNA World and in both extended RNA codes, share the same scaling and statistical properties to those encountered in current prokaryotes, we used the genomes of four Eubacteria and three Archaeas. For each prokaryote, we obtained their respective genomes obeying the RNA code or the extended RNA codes types I and II. In each case, we estimated the scaling properties of triplet sequences via a renormalization group approach, and we calculated the frequency distributions of distances for each codon. Remarkably, the scaling properties of the distance series of some codons from the RNA code and most codons from both extended RNA codes turned out to be identical or very close to the scaling properties of codons of the SGC. To test for the robustness of these results, we show, via computer simulation experiments, that random mutations of current genomes, at the rates of 10−10 per site per year during three billions of years, were not enough for destroying the observed patterns. Therefore, we conclude that most current prokaryotes may still contain relics of the primeval RNA World and that both extended RNA codes may well represent two plausible evolutionary paths between the RNA code and the current SGC
    • …
    corecore